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1.1 Finite Element Modeling Background 

In recent years, finite element analysis (FEA) has developed into a 

potentially more useful tool for study and design. Under the condition that 

the user possesses adequate modeling knowledge, a comprehensive analysis 

can become a useful entity for various engineering applications. During 

modeling, utilizing the wrong approach or aspect might result in the wrong 

answer. So, experimental results or a closed-form solution must be provided 

to validate the results of any FEA and have complete trust in them. The 

fundamental benefit of FEA is its capacity to recreate pricey tests and offer 

simple solutions to complex problems. By utilizing various element types, 

different properties of materials, and multiple loading and boundary 

conditions, the FEA may be used for various engineering applications. 

This study simulated the shear strength and behavior of BFRP-reinforced 

concrete beams reinforced with basalt macro fiber (BFRP-BMF-RC beams) 

with and without stirrups using the FEA program ABAQUS 2019. Due to its 

large library of materials and elements, capacity to simulate multi-

dimensional problems, and popularity in academic and research 

organizations, ABAQUS is a popular finite element analysis (FEA) program. 

Eighteen BFRP-RC beams without stirrups were modeled, considering the 

effect of Basalt Macro fibers (BMF), concrete compressive, and the BFRP 

reinforcement ratio. In addition, three BFRP-RC beams with stirrups were 

modeled considering the stirrup contribution 

 

1.1.1 Meshing and Defining Element Types 

The concrete was modeled with an 8-node linear brick solid element, 

reduced integration, and hourglass control (C3D8R). This element provides 

an acceptable solution to the most three-dimensional model. Each 3D 

continuum element has eight nodes, each node having 3 degrees of freedom. 

This type of element has only one integration point (Gauss point) located at 

the centroid of the elements. It can be used in Abaqus/Explicit and 

Abaqus/Standard for linear and nonlinear analysis. Abaqus adds a small 

amount of artificial "hourglass stiffness" to linear reduced integration 
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elements to limit the model's hourglass propagation. Reasonably fine mesh 

used to first-order reduced integration elements leads to more acceptable 

results [1]. The mesh size was calibrated to 10 mm in this study. A 2-node 

linear 3D truss element (T3D2) representing the longitudinal and transverse 

BFRP bars was used. Each node of the truss element has 3 degrees of 

freedom. The steel plates 20 x 60 x 150 mm were used for supports and 

loading points to prevent stress concentration problems and distribute the 

loads equally on the loaded area. The C3D8R element type was also used to 

model these plates and distribute the loads equally in the loaded area.  

 

1.1.2 Concrete Constitutive Models 

To represent the nonlinear behavior of concrete, ABAQUS includes three 

material models: brittle cracking, concrete smeared cracking, and the 

Concrete Damaged Plasticity Model (CDPM). The CDPM, which explains 

the inelastic behavior of concrete using the principles of isotropic damaged 

elasticity combined with isotropic tensile and compressive plasticity, could 

be regarded as one of the best models for modeling complex concrete 

behavior. The CDPM established by Lubliner et al. [2] and developed by Lee 

and Fevnes [3] is based on the plasticity theory for the nonlinear analysis of 

brittle materials. The model considers the degradation of elastic stiffness 

induced by plastic straining in tension and compression. [1].   

 

1.1.2.1 Uniaxial tension stress behavior and defining tension stiffening 

The stress-strain behavior under uniaxial tension is a linear elastic 

relationship 𝜎𝑡 = 𝐸0𝜀𝑡 until the cracking stress (𝜎𝑐𝑟 ). This study used the 

splitting tensile strength to evaluate the cracking stress. Therefore, to obtain 

cracking stress of concrete from splitting tensile strength 0.7𝑓𝑠𝑝 was used, as 

Kim and Taha [4] recommended. The stress-strain softening response rather 

than hardening is observed beyond the cracking stress if the fiber volume 

fraction is less than 2% [5]. In the post-cracking region of reinforced 

concrete, tension stiffening occurs, allowing the strain-softening of cracked 

concrete to be defined.  This behavior also simulates the effects of 
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reinforcing interaction with concrete [6]. Moreover, tension stiffening 

significantly affects the modeling of fiber-reinforced concrete beams. Eq. (1) 

is the simple expression suggested by Okamura and Maekawa [7] was used 

to model the tension stiffening of reinforced concrete. 

𝜎𝑡 = 𝜎𝑐𝑟 (
𝜀𝑐𝑟

𝜀𝑡
)

𝑛

    ;       𝜀𝑐𝑟 =
𝜎𝑐𝑟

𝐸0
 (1) 

Where: 𝜎𝑡 and 𝜀𝑡 tensile stress and strain in cracked concrete, 

respectively, 𝜎𝑐𝑟 and 𝜀𝑐𝑟 are concrete cracking tensile strength and cracking 

strain, respectively, 𝐸0 is the concrete elastic modulus, and n is a number 

depending on the bond characteristic: 1/3 was proposed for the n value by 

Okamura and Maekawa [7], then Tamai et al. [8] used 0.4 for the deformed 

bar. Belarbi and Hsu [9] found that Eq.(1) was the best mathematical model 

to fit the descending branch of the tensile stress-strain curve with a power of 

0.4. Moreover, An et al. [10] used the n value greater than 0.6 to model the 

tension softening based on fracture energy and the bond effect between steel 

and concrete. Kmiecik and Kaminski [11] proposed that for a given 

simulation, calibrate the n value with the predicted analysis results. Dere and 

Koroglu [12] proposed a simple relation of 0.7 + 1000𝜀𝑡 to estimate the n  

value. 

The above review for n value is related to the tension stiffening of 

concrete when reinforced with steel bars. Therefore, in this study, Okamura 

and Maekawa's [7] model was modified based on the experimental results to 

include the effect of BMF on the tension stiffening of concrete reinforced 

with BFRP bars as described below:  

For concrete without BMF reinforced with BFRP bars, Eq. (2) was used 

to evaluate the n value. 

𝑛 = 0.85 − 𝜀𝑡  (2) 

 

whlie for concrete containing BMF and reinforced with BFRP bars, 

Eq.(3) was used to evaluate the n value. The contribution of BMF increases 

the tension stiffening of concrete, arresting the development of the crack 

because of the fiber bridging effect. 
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𝑛 = (0.85 − 10𝑉𝑓) − 𝜀𝑡
3/4 (3) 

Where;𝑉𝑓 is the volume fraction of BMF 

Figure 1 shows the tension stress-strain curves for each class of concrete 

used in this study. The ascending part of the curve is the tension resistance 

of concrete up to cracks appearing. And the curve descending part represents 

the tension stiffening of concrete due to reinforcing with BFRP bars and the 

contribution of BMF. 

Figure 1 Tension stress-strain curves of various reinforced concrete 

 

Generally, in reinforced concrete behavior, post-cracking is defined as 

the post-cracking stress as a function of cracking strain (𝜀𝑡
𝑐𝑘) as shown in 

Figure 1-a. The cracking strain is computed by subtracting the undamaged 

concrete's elastic strain (𝜀0𝑡
𝑒𝑙) from the total strain (𝜀𝑡) as shown in Eq.(4) [6].  
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Figure 2 a) Definition of cracking strain and effect of damage on the elastic stiffness of 

concrete under tensile stress b) definition of inelastic strain and effect of damage on the 

elastic stiffness of concrete under compressive stress 

1.1.2.2 Uniaxial compression stress behavior  

The stress-strain behavior of uniaxial compression is a linear elastic 

relationship 𝜎𝑐 = 𝐸0𝜀𝑐until the initial yield point. After that, the behavior 

𝜀𝑡
𝑐𝑘 = 𝜀𝑡 − 𝜀0𝑡

𝑒𝑙    ,             𝜀0𝑡
𝑒𝑙 =

𝜎𝑡

𝐸0
 (4) 
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typically shows stress hardening followed by strain-softening beyond the 

ultimate stress in the plastic zone. Yang et al. [13] proposed a model as Eq. 

(5) to simulate the compressive stress-strain relationship of concrete. The 

suggested model estimates the stress-strain curve depending on concrete 

compressive strength and density. On the other hand, the ascending part of 

the curve well coincides with the experimental stress-strain curve. Therefore, 

this model was used to predict the compressive stress-strain curve of the 

concrete for each concrete class, as shown in Figure 3. 

𝜎𝑐 = 𝑓𝑐
′ [

(𝛽1 + 1) (
𝜀𝑐

𝜀0
)

(
𝜀𝑐

𝜀0
)

𝛽1+1

+ 𝛽1

] (5) 

Where: 

𝛽1 = 0.2𝑒0.73𝜉            𝑓𝑜𝑟  𝜀𝑐 ≤ 𝜀0 

𝛽1 = 0.41𝑒0.77𝜉          𝑓𝑜𝑟 𝜀𝑐 > 𝜀0 

𝜀0 = 0.0016𝑒240(𝑓𝑐
′ 𝐸0⁄ ) 

𝜉 = (𝑓𝑐
′ 𝑓0⁄ )0.67(𝑤0 𝑤𝑐⁄ )1.17 

𝑓0 = 10 𝑀𝑃𝑎, refers to the concrete compressive strength reference value. 

𝑓𝑐
′ is the compressive strength of concrete 

𝑤0 = 2300 𝑘𝑔 𝑚3⁄  is a reference value for the concrete density. 

𝑤𝑐 is the concrete density. 

 

The relation of the stress-strain curve beyond linear response is the 

inelastic relation between compressive stress and inelastic strain (𝜀𝑐
𝑖𝑛). The 

compressive inelastic strain is obtained by subtracting the undamaged 

concrete's elastic strain. (𝜀0𝑐
𝑒𝑙 ) from the total strain  (𝜀𝑐) as shown in Eq.(6) 

𝜀𝑐
𝑖𝑛 = 𝜀𝑐 − 𝜀0𝑡

𝑖𝑛   ,             𝜀0𝑡
𝑖𝑛 =

𝜎𝑐

𝐸0
 (6) 
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Figure 3 Compression stress-strain curves of various concrete class 

 

1.1.3 Damage parameters 

As shown in Figure 2-b, suppose the concrete sample is unloaded at any 

point from the strain-softening part of the stress-strain curves. In this case, a 

weakened unloading response is exhibited: the concrete elastic stiffness 

seems to be damaged or degraded. The damage to the elastic stiffness is 

represented by two damage factors, dt, and dc. Lubliner et al.[2] derived a 

simple model for plastic degradation of concrete, assuming that plastic 

degradation only occurs in the softening range and the stiffness is 

proportional to the cohesion. Based on this assumption, under uniaxial 

tension and uniaxial compression, the damage factors dt and dc are estimated 

from the following relationships, Eq(7) and Eq. (8) 

 

𝑑𝑡 = 1 −
𝜎𝑡

𝜎𝑐𝑟
 (7) 

𝑑𝑐 = 1 −
𝜎𝑐

𝑓𝑐
′
 (8) 
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The damage variables range from zero, representing the undamaged 

material, to one, total strength loss. The damage parameters data were 

introduced to Abaqus in terms of damage factors, cracked strains, and 

inelastic strains. These damage factors reduce the elastic stiffness of the 

concrete in both tension and compression behavior, as illustrated in Figure 

2. Abaqus changes the cracked strain and inelastic strain to plastic strain 

using these relationships, Eq. (9) and Eq. (10) 

𝜀𝑡
𝑝𝑙

= 𝜀𝑡
𝑐𝑘 −

𝑑𝑡 𝜎𝑡

(1 − 𝑑𝑡)𝐸0
 (9) 

𝜀𝑐
𝑝𝑙 = 𝜀𝑐

𝑖𝑛 −
𝑑𝑐 𝜎𝑐

(1 − 𝑑𝑐)𝐸0
 (10) 

 

1.1.3.1 Plasticity data  

The dilation angle () is one of the main parameters required in Abaqus 

to be used in the plastic potential flow non-association rule. It is a volume 

change resulting from the shear distortion of an element in material and 

measured in the p-q plane. Vermeer and Borst [14] recommended a 13 for 

the dilation angle of concrete. Oñate et al. [15] used 32 as a dilation angle to 

analyze their models: plain cantilever concrete beam, prestressed cantilever 

beam, and simple tension model. At the same time, Lubliner et al. [2] to 

verification Concrete Damaged Plasticity Model (CDPM)) used a dilation 

angle of 15 in the model of the biaxial compression test proposed by Kupfer 

et al. [16]; this model had the uniaxial compression and tension strength of 

the concrete 32.8 MPa and 2.3 MPa, respectively. They used a dilation angle 

of 32 for the analysis of a notched beam that Arrea and Ingraffea [17] tested 

with the uniaxial compression and tension strength of the concrete 30 MPa 

and 2.75 MPa, respectively. Excellent agreement was observed between 

numerical results from Lubliner et al. [2] models with the experimental data 

from Kupfer et al. [16] and Arrea and Ingraffea [17]. In the same manner, Lee 

and Fenves  [3] verified their model with the experimental biaxial 

compression test data of Kupfer et al. [16]; they used dilation angles 31 and 

24 for the concrete. The result using 24 display good agreement with all 
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experimental data, whereas 31 yields a slightly different response. 

Jankowiak and Lodygowski [18] determined 38 based on a minimization of 

the error of the biaxial compression model of Kupfer et al.[16]. In a parameter 

study on a reinforced concrete beam loaded with two-point loads presented 

in Malm [19], for different dilation angles (10, 20, 30, 40, 50, 56.3), 

observed that the beam showed brittle behavior for small value of dilation 

angle and tended to ductile behavior with the higher value of dilation angle. 

Stoner and Polak [20] recommended for beams without stirrups a dilation 

angle of 30 but 50 for beams with stirrups. However, Abaqus's default 

value for the dilation angle is 15. 

It is evident from the above review that the value of the dilation angle 

changes in a wide range, and it must be calibrated with the experimental 

results. Therefore, in this study, the dilation angle after calibration was taken 

between 20 and  35. Higher dilation angles were used for beams with better 

ductility because, as illustrated by Malm [19], the dilation angle of concrete 

is related to the ductility of members. 

The Abaqus default values were used for other plasticity parameters; 

Flow potential eccentricity is 𝜖 = 0.1, the ratio of initial biaxial compressive 

yield stress to initial uniaxial compressive yield stress is 𝜎𝑏0 𝜎𝑐0⁄ = 1.16, the 

ratio of the second stress invariant on the tensile meridian to that on the 

compressive meridian at initial yield for any given value of the pressure 

invariant is 𝐾𝑐 = 0.667 

The elastic properties of concrete and elastic modulus and geometry of  

BFRP bars used in ABAQUS were obtained from experimental data. 

 

1.2 Finite Element Results 

The following sections compare the ABAQUS FEA results for all tested 

beams with the experimental data. The following comparisons were made: 

ultimate loads, load-deflection behavior, and crack patterns. 
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1.2.1  Load deflection curve 

A comparison of experimental and FEA load-deflection curves for all 

beams is shown in Figure 4. The curves exhibit that the FEA with the 

experimental results coincided well over the whole range of behavior. All 

beams show identical pre-cracking, post-cracking, and ultimate load 

characteristics. Consequently, it has been demonstrated that ABAQUS can 

model BFRP-RC beams reinforced with BMF, both with and without 

stirrups. It can be observed that the FEA presented slight deviations in trends 

from the experimental trends in some beams, especially in the post-cracking 

stage. This might be due to some differences between FEA models and actual 

beams. In the FEA, the bonding between the concrete and BFRP bars was 

considered perfect (no slip), but in reality, little slip occurs. Furthermore, 

drying shrinkage causes microcracks. These might reduce the stiffness of the 

actual beams, but perfect homogeneous materials were assumed in the FEA 

simulation.  
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Figure 4 Effect of BMF on the load-deflection curve at mid-span of the tested beams 

and comparison with finite element analysis 
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 Figure 5 Effect of BMF on the load-deflection curve at mid-span of the tested beams and 

comparison with finite element analysis (continued) 

 

1.2.2 Ultimate load 

Table 1 and Figure 6 show the comparison between experimental and 

analytical results of ultimate loads and mid-span deflection of the BFRP-

BMF-RC  beams. The comparisons are presented in the form of ultimate load 

(𝑃𝑢,𝑒𝑥𝑝 𝑃𝑢,𝐹𝐸𝐴⁄ ) and corresponding deflections at mid span (∆𝑢,𝑒𝑥𝑝 ∆𝑢,𝐹𝐸𝐴⁄ ). 

The average ratios of (𝑃𝑢,𝑒𝑥𝑝 𝑃𝑢,𝐹𝐸𝐴⁄ ) and (∆𝑢,𝑒𝑥𝑝 ∆𝑢,𝐹𝐸𝐴⁄ ) for the tested 

beams are 1.00 and 1.00 respectively. This shows that the FEA correctly 

evaluated the ultimate loads and deflections.  
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Table 1 Results of experimental and finite element analysis comparison 

of the beams 

Beam 

Designations 

EXP  FEA   

𝑃𝒖 ∆𝒖 

 

𝑃𝒖 ∆𝒖 

𝑃𝒖,𝒆𝒙𝒑

𝑷𝒖,𝑭𝑬𝑨
 

∆𝒖,𝒆𝒙𝒑

∆𝒖,𝑭𝑬𝑨
 

(kN) (mm)  (kN) (mm)   

C30-0-1.14 53.80 13.23  54.84 14.10 0.98 0.94 

C30-0.75-1.14 74.41 17.41  72.16 18.70 1.03 0.93 

C30-1.5-1.14 97.61 19.30  90.00 20.00 1.08 0.97 

C60-0-1.14 59.76 14.13  64.17 13.33 0.93 1.06 

C60-0.75-1.14 91.55 16.34  91.27 18.10 1.00 0.90 

C60-1.5-1.14 123.85 20.58  124.99 21.74 0.99 0.95 

C90-0-1.14 62.00 13.90  63.90 14.83 0.97 0.94 

C90-0.75-1.14 100.42 18.11  98.32 17.37 1.02 1.04 

C90-1.51.14 133.43 19.45  137.54 20.43 0.97 0.95 

C90S-0-1.14 126.88 29.59  128.62 27.78 0.99 1.07 

C90S-0.75-1.14 187.44 37.23  186.02 38.00 1.01 0.98 

C90S-1.5-1.14 187.36 43.00  187.43 38.25 1.00 1.12 

C90-0-0.71 53.57 16.12  51.08 14.47 1.05 1.11 

C90-0.75-0.71 104.44 29.18  104.05 30.26 1.00 0.96 

C90-1.5-0.71 126.5 34.87  130.29 37.05 0.97 0.94 

C90-0-1.71 53.29 7.20  55.87 6.88 0.95 1.05 

C90-0.75-1.71 118.82 17.93  121.60 20.38 0.98 0.88 

C90-1.5-1.71 168.79 23.35  164.87 23.80 1.02 0.98 

C90-0-2.52 65.62 9.93  66.90 8.34 0.98 1.19 

C90-0.75-2.52 130.20 17.88  132.31 19.25 0.98 0.93 

C90-1.50-2.52 203.32 24.81  193.79 24.43 1.05 1.02 

     Mean 1.00 1.00 

     SD 0.08 0.03 
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Figure 6 Comparison between experimental and  FEA results at mid-span of Beams 
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1.2.3 Crack pattern 

A tool for showing crack propagation at the concrete integration points 

or element centroid is not available in the ABAQUS FEA software. Other 

indicators, such as tensile damage, compressive damage, plastic strain, or 

logarithmic strain, might be considered indicators of crack formation. 

Therefore, it was assumed in this study that the cracks started at the 

elements where tensile damage had occurred. Figure 7 shows the tensile 

damage diagram from the FEA and the crack pattern from the experimental 

testing of the beams all tested beams. The red elements show that the 

element's tensile damage ratios are more than 90%. It can be seen that the 

outcomes of tensile damage of FEA and crack pattern of tested beams are 

largely comparable. It is clear that the number of cracks in beams that were 

reinforced with BMF is higher than those without BMF contribution because 

of the increasing tension stiffening of  BFRP-RC beams due to the inclusion 

of BMF. And it is more remarkable in the HSC beams than NSC beams; for 

example, the number of cracks in beam C90-1.5-1.14 is higher than the 

number of cracks in compared counterpart beam C90-0-0.14. 
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Figure 7 Comparison of the pattern of cracks in the tested beams and FEA  
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1.3  Conclusion 

• It is acceptable to use the CDP model to predict the behavior of BFRP-

RC beams reinforced with BMF with stirrups or not. The results of the 

FEA are in good agreement with those obtained by the experiments in 

terms of load-deflection behavior, failure mode, and crack pattern. 

• The modified Okamura and Maekawa equation to predict the tension 

stiffening of RC showed an agreement result for all beams. It was 

modified based on the experimental data to include the effect of BMF 

on the behavior and capacity of BFRP-RC beams by considering the 

impact of BMF on the tension stiffening of concrete. 

 

 

List of Abbreviations 

BFRP:   Basalt Fiber Reinforced Polymer 

BMF:    Basalt Macro Fiber 

CDPM: Concrete Damage Plasticity Model 

RC:       Reinforced concrete 

FEA:     Finite Element Analysis 
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